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Introduction

In recent years, the field of Natural Language Processing (NLP) has witnessed remarkable
advancements, revolutionizing the way humans interact with machines and transforming
various industries. NLP is an interdisciplinary branch of artificial intelligence that focuses
on narrowing the gap between human language and computers, enabling machines to
understand, process, and generate human-like text. Artificial Intelligence (AI) approaches
have been helping to improve both natural language understanding and generation. In
addition, with the exponential growth of available data amount and the increasing reliance
on Al-based assistants such as ChatGPT[] NLP has become more necessary than ever
before. Thus, this Master Thesis explores the continuous relevance of NLP in shaping
the future of human-machine interaction through conversations analysis which has many
applications to be developed later in this work. Unraveling the intricacies of conversation
features can lead to unprecedented possibilities and implement robust technologies that
truly understand and converse with humans.

Conversations are omnipresent in User-Generated Contents (UGC). They can be found
in social networks, in fictional creations such as films and TV shows, or through human-
machine interaction via chatbots. Then, Emotion Detection in Conversation (ERC) is
an important part of conversation understanding, and many use-cases can be found to
emotion-oriented conversation understanding. For instance, in healthcare, some specific
chat bots have already been built in order to provide a daily follow-up of patients with
psychological or psychiatric disorders [22]. This can be done by analysing sentences
written by the patient [45] or answers to specific questions [6]. This technology makes it
possible to monitor patients much more frequently, and to identify trends towards relapse
or instability [70], for instance. Besides, in the business field, emotion detection can bring
useful insights that help to enhance recommender systems [65] and customer services [26].

For all these purposes, the advent of deep learning has been a complete revolution. Neu-
ral networks based models can now provide competitive solutions to most of the NLP
concerns, including conversation understanding and, in particular emotion detection [1J.
A specific deep learning models family seems adapted to address such challenges: meta-
learning algorithms [61]. It basically consists in learning to learn or learning to generalize
from multiple tasks or datasets to acquire knowledge or prior experience that can be gen-
eralized to unseen tasks or domains. In our case, meta-learning can be used to effectively
learn the relationships between emotions. Indeed, there is a broad plurality of emotions,
which requires to focus on general concepts. In this work, that’s exactly what we are try-
ing to do by considering the conversational context, which would be a huge step forward
in ERC.

The main goal is to use deep learning models based on meta learners to produce accurate
emotion predictions in user generated conversations. At the best of our knowledge, the
latest methods that use meta-learning to do ERC do not integrate the conversational
context. The goal of this Master Thesis is therefore to adapt existing methods, not only
metric-based meta-learning approaches, but also all kinds of meta-learning schemes.

"https://openai.com/blog/chatgpt
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In the next chapters, we will gradually dive in meta-learning for emotion recognition.
Starting with an overview of the key concepts in chapter |1, we will then explore in more
details the deep learning tools involved, as well as the associated mathematical formalisms
(Chapter . The next chapter will be devoted to examining some existing meta-learning
approaches, which leads us to the search for a suitable method for integrating conver-
sational context into a meta-learning framework (Chapter (3). Then, we will detail the
elected experimental setup along with the results (Chapter {4f). Especially, we found that
tuning a meta-learning model that accounts for conversational context is a demanding
task in terms of training, with a weighted F1 score of 51% in multiclass classification.
Nevertheless, the relevance of the predictions is encouraging, suggesting a favorable basis
for generalization. Finally, we conclude this study by pointing out the limitations and
perspectives for future work suggested by our approach (Chapter |5)).
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1. Context

In this first chapter, we describe the essential concepts that constitute the basis of what
we will study in the following chapters. We begin by describing the type of textual data
to be processed, before describing the task performed on such data. We conclude with a
brief description of the family of methods chosen for this study.

1.1 Conversations in NLP

From a technical point of view, conversations belong to the family of UGC. This gathers
a collection of user-generated text, audio, or video content that is created and shared by
individuals within a digital platform. Conversations, in particular, can be considered a
form of UGC when they occur in online communication channels such as social media plat-
forms, discussion forums, messaging apps, or chatbots. From such contents, there exists
NLP techniques to process conversations, which implies to convert them to a computer-
friendly format. First, the conversation is often stored as a list of utterances, where an
utterance is defined as a whole speaker turn. Then, each utterance will be converted in
a series of phrasal entities called tokens to end up with a meaningful input format for
applying NLP methods. From this processed dialog, many tasks can be performed, such
as speaker detection, topic prediction or emotion detection. It’s the latter in particular
that will be the focus of this work.

1.2 Emotion Detection

To perform such a task, using machine learning models seems to be a relevant choice
as they can deduce patterns and features indicative of emotions for large amounts of
data, and generalize that knowledge to accurately classify emotions in previously unseen
conversations. Emotion detection therefore belongs to the family of classification tasks.
Figure shows a basic example of emotion classification on different sentences from a
dialogue. In this project, we focus on dialogues with only two interlocutors, known as
dyadic dialogues. Since emotions are predicted from utterances in conversations, this task
is exactly ERC, whose advances have been reviewed by Poria et al. [53].

In this work, one of our goal is to broaden this typical classification scenario in order to
include cases where we find other labels. These new emotions can be variations of the
initial classes or more general feelings. One can also imagine a classification scenario on
previously unseen classes, as it is done in recent work [25]. We use meta learning in this
work to seek comparable performances for classification task in this much more flexible
scenario. However, to understand meta-learning as such, it is necessary to first address
what it is based on: deep learning.

1.3 Deep Learning

Contrary to regular machine learning where features are provided by the model designer,
the deep learning field includes machine learning models able to automatically extract
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Example of input dialog

- I don't think I will join you guys tonight, things are not going well right now.

- Oh, really. What's going on?

- Oh just some guys at school making fun of me, you know it is not the first time.

- This behaviour is completely unacceptable, I cannot imagine they did it again!

- Yes for sure. They are certainly jealous: I'm now sure to graduate as Major of my class.
- Are you kidding me? That's fantastic, I'm so proud of you!

Utterances Y Detected emotion

"I don't think I will join you guys tonight, things are not going well right now." ’—) MaChine ———>» Joy Sadness Fear Disgust Anger Surprise

"This behaviour is completely unacceptable, I cannot imagine they did it again!" }——} leamlng 4}{ Joy Sadness Fear Disqgust Anger Surprise

model
"Are you kidding me? That's fantastic, I'm so proud of you!" —— | ———>» Joy Sadness Fear Disgust Anger Surprise

_

Figure 1.1: An example of emotion recognition on utterances from a dyadic dialog. The
six emotions classes correspond to Ekman’s six emotions.

supposedly relevant features. In deep learning, one uses neural networks to perform fea-
ture extraction. Neural networks training is basically what deep learning is all about. A
neural network consists of interconnected nodes (therefore called neurons) organized in
layers, where information flows through the network, allowing it to learn patterns, make
predictions, and perform various tasks such as image recognition, text classification or
clustering. The learning is actually performed through iterative parameters updates. In-
deed, each neuron is assigned a value called a parameter, and parameters are then updated
throughout the training phase, so that at the end of this stage the network acquires a
certain understanding of the input data. It appears that deep learning has outperformed
shallow machine learning models in many application (forecasting, image processing, ... ).
Therefore, the unequalled performance of neural approaches has made them an almost
systematic choice in the development of NLP systems. One of the main advantages of
using deep learning for NLP is flexibility in the model structure, especially the input layer,
which enables sequential data (such as text) to be processed efficiently. Moreover, even
though neural networks have been around since the 1980s [21], modern numerical methods
make it possible to calculate backpropagation (c¢f. infra) in an approximate way, and this,
combined with increasing machine capacities, makes it possible to stack many layers of
neural networks and make computations on it. This is important because the depth of the
network allows to describe data with more details, revealing some more subtle features.

Since deep learning methods seem adapted to emotion recognition, it is now time to dive
deeper in the technical background required to describe both the experimental setup and
state-of-the-art in application of meta-learning approaches on conversations.

10 Chapter 1 Barbara Gendron-Audebert



2. Background

Now that we have covered some general ideas about the method, let’s have a closer look at
how we are going to leverage deep learning in our study. This chapter provides technical
insights about key concepts in deep learning and how to train such models.

2.1 Deep Learning

Traditional architectures for sequential data. As text data consists of sequences
of words, a usual way to deal with sequential data before the advent of deep learning
was to use Conditional Random Fields (CRF) [33]. It is basically a Hidden Markov
Model (HMM) [44] that aims at maximizing the set of probabilities of the sequence with
a softmax. In the case of classification, the probabilities are for each class, and the aim of
CRF at inference is to evaluate the probability of having each class given the sequence.
A common way to perform this evaluation is to use the Viterbi algorithm [I§] which aims
at finding the most probable sequence of states given a sequence of labels

Now, considering deep learning methods, it is important to use a neural network design
adapted to this sequential nature. That’s exactly the aim of Recurrent Neural Networks
(RNN) 60} 31]. In such structure, the nodes are connected to each other to form a chain,
allowing information to be processed sequentially. Nevertheless, RNN have some issues,
especially they struggle to account for long term dependencies because of the vanishing
gradient phenomenon. This refers to the diminishing magnitude of gradients as they are
back-propagated through many nodes of the RNN, leading to ineffective learning as most
gradients are equal to zero.

A first improvement. A variant of RNN, named LSTM for Long Short-Term Memory
Networks [27], has been developed to overcome the vanishing gradient issue. Like RNN,
LSTM have a cell chain structure, which makes them suitable as well for sequential
data processing. However, the inner structure of each cell is different, in the sense that
information circulates along two different pathways that can be likened to short- and long-
term memories. The latter solves the problem of long-term dependencies encountered with
RNN. What is particularly interesting about this memory is that it retains the word’s
context, and LSTM can be used to process a sentence in both ways (bidirectional LSTM)
to account for the whole surrounding context [51]. Even though, as the cell structure is
more complex in LSTM, a model based on such architecture requires heavy computations
that are not parallelizable due to its sequential nature. This can be limiting when stacking
several layers, also stacking LSTM layers has been proven to be quite unstable.

The advent of Transformers. Furthermore, a new model architecture manages to
solve this computational challenge: the Transformer [68]. In addition to being quite
optimal thanks to parallelizable computation, the Transformer is able to retrieve long
term dependencies in sequential data. This is enabled thanks to the attention mechanism
that has been first theorized by Bahdanau et al. [3] and consists in associating weights
to each element of the input that represent their importance regarding a specific task.
Transformer-based models outperform most of sequential approaches, and in particular
LSTM [67] with models like BERT [I4] and extensions like RoBERTa [40]. For now,
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Transformers are still omnipresent in Large Language Models (LLM) such as GPT [§],
LLaMA [66], PaLM, [11] etc. It should be noted that these models do not use the entire
Transformer architecture. A Transformer has an encoder-decoder structure, which are its
two main parts, and BERT is encoder-based whereas modern causal language models are
decoder-based.

2.2 Training Procedure

Since we have some deep learning models to use in emotion detection, it is time to describe
how the training phase is concretely implemented in a general sense, before tackling our
approach specificities in the following parts.

Principle. In order to train and evaluate the model, data first has to be split in 3
subsets called training, validation and test sets. Then all subsets are pre-processed the
same way in order to apply the model according to the input format. On the training set,
optimization of the model parameters is performed according to the training signal held in
the loss function. This function is therefore optimized through an optimization strategy
described by the optimizer (it is often derived from the gradient descent algorithm [59]).
Finally, the optimization signal is spread along all the layers of the model going deeper
and deeper into it, which is referred to as backpropagation.

For instance, if the optimization strategy for the loss function is a gradient descent, the
backpropagation algorithm defines the weights update between steps t and t+1 as follows:

dL
Wi =W+ a—— 2.1
t+1 t+ v (2.1)
Where L is the loss function and the parameter « is defined as the learning rate. If the
model has several layers, the derivative of the loss with respect to the weights becomes a
compound partial derivative following the chain rule. Given A and Z two intermediate
layers with associated parameters a and z, it can be written:

oL OL Oa Oz
W 900 (2:2)

By choosing a loss function and tuning the optimizer’s parameters, it is possible to im-
plement and improve several learning strategies, which means that the main challenge is
to find the right setup for each application. Once the model is fit on the training set, it is
applied to the validation set that contains unseen data to check the relevancy of the fit.
In order to gradually improve the parameter tuning, these two steps are repeated several
times and are called epochs. Once all the epochs are performed, it is time to evaluate the
final model on the unseen data contained in the test set. This gives a final evaluation of
the model that consists in computing some evaluation metrics.

The most common evaluation metrics for classification tasks are accuracy, precision and
recall. Accuracy simply consists in computing the percentage of right predictions amongst
all predictions. As it is not giving any insight about what cases are correctly or incorrectly
predicted, it has to be completed with precision, which accounts for the number of relevant
predictions among all predictions for a class, and recall which accounts for the number of
relevant elements that are actually retrieved for a class. Then, the F'1-score is a broadly
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used metric for classification tasks as it is the harmonic mean of precision and recall. So,
it can be seen as a more precise evaluation of the accuracy of the model. In order to
formally define them, let’s place ourselves in a binary classification scenario (the following
can easily be extended to multiclass classification by considering class pairs). Let P and
N be respectively the number of real positive and real negative data samples. Let TP,
TN, FP and FN be respectively the number of true positives, true negatives (correct
predictions of positive and negative classes), false positives and false negatives (incorrect
predictions of positive and negative classes). Then, the standard metrics can be defined
as follows:

TP + TN TP
ACCUI'&CY = P:::—N Precision = m (23)
TP 2TP
N=e_""  F = 2.4
Recll = 757w M = amprrp s AN (2.4)

In addition to these standard metrics, many other criteria can be computed. In our
particular case, we will use Matthews Correlation Coefficient (MCC) [12]. This measures
a Pearson correlation [49] between the predicted and the actual class. It appears to
be a more challenging metric than the F'1 score, which gives more precise information
on classification quality [4]. Using the previously introduced notations and adding the
following;:

TP + FN TP + FP
N:W+W+W+W,S:—%—MMP:—%— (2.5)

MCC was originally defined in [42] as:

_ TP/N-SxP
- J/PS(1=8)(1-P)

MCC (2.6)

Training scenarios. The aforementioned training procedure can serve various training
scenarios. The most standard one when dealing with LLMs is to apply fine-tuning. Indeed,
big models such as BERT are said to be pre-trained, which means that a first training has
been performed on very large corpora. From these, the pre-trained model can be retrieved
and serve many purposes. Thus, when one wants to use such a model to perform a specific
task, it is necessary to adapt it through a lighter training, which is called fine-tuning.
Basically, fine-tuning allows to fetch relevant information from the general representation
of the pre-trained model. It is usually a task-specific procedure. Then, when considering
two tasks that are either similar or connected, meaning solving the second is made easier
by learning the first, there exist other transfer learning approaches that consists in training
scenarios where some knowledge acquired from a source task is used to solve a target task.
In addition to avoiding fine-tuning when it is not necessary, transfer learning enables more
robust training when we have little data. It is also suitable when one wants to represent
some general features, that makes low data training scenarios particularly relevant from
a meta-learning perspective.

In particular, the few-shot learning scenario is a transfer learning scenario that consists
in providing only few examples from a new class (or a new task). This forces the model
to make predictions with very little knowledge on the target. For example, it may be

Chapter 2 Barbara Gendron-Audebert 13
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provided with only one example (one-shot), or even none at all (zero-shot). In cases
where we want to give the model a small number of examples, we can also follow methods
such as N-way k-fold, which involves providing k examples in N different contexts, such
as N classes. This is typically used in metric learning, but can also be extended to
unseen classes, therefore referring to the zero-shot scenario. Indeed, using some metric
learning, the computed distances are relative between the classes, which means that we
can theoretically feed the model with previously unseen classes.

2.3 Implementation Details

In order to design and train deep learning models in this project, the selected framework
that embeds both pre-built model layers and training tools (loss, optimizers, ...) is
PyTorch [48]. In addition to these many available features, this framework especially
includes an automatic differentiation engine [47] written in C++ that allows to retain the
parameters gradients and perform backpropagation in a single line of code.

As both meta-learning and conversational data handling are computationally heavy tasks,
it is necessary to be provided a large amount of computing power. For that we could use
the French HPC network Grid’5000 [5]. It is a testbed for research in computer science,
with a focus on parallel and distributed computing, providing researchers access to 15000
cores and 800 compute-nodes in homogeneous clusters in France and Luxembourg. On
Nancy site we can have access to GPU clusters from 11GB to 40GB of memory.

Regarding experiments reproducibility, all the code produced so far is available in this
Git repository: https://github.com/B-Gendron/meta_dyda.

14 Chapter 2 Barbara Gendron-Audebert
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3. Related Work

From now, we need to have a dual focus, since we’re looking both at the latest advances
in meta-learning methods, and in conversational data processing. This chapter therefore
presents the key results of recent literature reviews on both topics.

3.1 A Primer on Meta-Learning

This section provides both an overview and a more specific characterization of meta-
learning through its comparison with related fields and a detailed investigation of different
application areas. Most of the following section stems from a recent survey on meta-
learning [28] and especially uses the same terminology and notations.

The deep learning revolution allowed to evolve from hand-designed features to representa-
tion learning, which means that a deep learning model automatically extracts supposedly
relevant features. In a similar way, meta-learning allows to evolve from hand-designed
learners to learning a learning algorithm. For this reason, meta-learning is often referred
to as a "learning to learn” machine learning strategy, which, although legitimate, is not
the only manner to describe meta-learning approaches. The following sections aims at
broadening meta-learning definition through a comparative study with its related fields.
In particular, this work focuses on meta-learning approaches that hold an explicit meta-
objective function designed for a single-task application.

In short, meta-learning can be described regarding three aspects expressed as simple
questions. Starting with "How?” leads to the definition of the meta-optimizer that dictates
how the meta-learner should be updated. Then, asking ”What?” comes up with the
meta-representation of the datasets and/or of the tasks. This is the built reference that
represents the acquired knowledge from which one can infer. Finally, the question ” Why?”
finds its answer in the meta-objective which guides the meta-learner through the desired
task.

Related fields. The following study of the meta-learning ecosystem focuses on training
approaches that provide algorithmic frameworks. Nevertheless, one can notice that there
are also some modeling approaches related to meta-learning, such as Hierarchical Bayesian
Models (HBM). It appears that such models also provide a formalism to describe some
algorithm-based models [23], that’s why we only focus here on this last category.

At first, a common way to perform representation learning is through the use of Transfer
Learning (TL) [72, [7T]. This approach involves transferring knowledge from a source task
for which data is provided to a target task. It implies parameter sharing and, in most
cases, fine-tuning. In vanilla transfer learning there is no meta-learning objective, besides
meta-learning can be used to define TL strategies among with other meta-representations.
Still without meta-objective, an extension of TL can be seen in Domain Adaptation (DA)
or Domain Generation (DG). However, contrary to TL, here the training is performed
on a set of tasks represented as a task distribution p(7). It appears that, as well as for
TL, meta-learning can be used to perform both DA and DG. Also regarding learning on
different tasks, Multi-task learning (MTL) differs from meta-learning in the sense that
the objective is to infer on a bunch of defined tasks, without the will to generalize on
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unseen tasks. Consequently, this method is not initially using a meta-objective, but there
are ways to include meta-objective in MTL to enhance model’s stability [3§].

Regarding other fields of representation learning, Hyperparameter Optimization (HO)
aims at learning an appropriate training setting. As it can be seen as a task for the
meta-learner, this family of methods define a meta-objective, such as in gradient-based
hyperparameter learning [19)].

Finally, there are other techniques that are more marginally related to meta-learning.
This is the case of Continual Learning (CL) [13], which is not rigorously part of meta-
learning as it has no explicit meta-training objective. However, these two approaches are
strongly connected as meta-learning can be used to improve CL baselines [2, 58], and it
can also hold requisites for CL in its objective in order to tackle the issue of catastrophic
forgetting [46] (cf. infra).

A formalism for meta-learning. This part aims at giving more details towards im-
plementation of meta-learning through a relatively light formalism in order to understand
the concepts of inner and outer optimization. Let w be the description of a training strat-
egy. It represents the meta-knowledge used for training and can be an initialization or
a hyperparameter selection, for instance. Let D be the dataset, splitted in some subset
such as D = (DWain Dval Diest)  Then, we need two groups of tasks. The first one is to be
used in training, called source tasks, and the second one is to be tested on a test stage,
called target tasks. For the moment, let’s focus on training stage only, that is to say on M
source tasks. Therefore, the considered data is precisely Dyouree = (D8R _ Dol Drest .
Finally, the model training uses the loss function £ and 6 contains the model parameters.
With such variables, it is possible to formally describe the optimization objectives gov-
erning meta-training. It basically consists in two objectives that respectively perform an
inner (equation and an outer (equation optimization.

M
w* = argmin Z L (DG - 9% (w), w) outer optimization (3.1)
Y =0
0" = argmin £ (D220 9, w*) inner optimization (3.2)
0

Therefore, the first equation represents the meta-training whereas the second one rep-
resents the model training. Between these two coupled equations, it can be seen that
the inner optimization is designed to provide feedback to the outer, and wice versa. As
meta-learning is often referred to as a ”learning to learn” scenario, this concept can
be seen materialized by the outer optimization equation that aims at selecting the best
learning configuration. Then, from equation that only provides information about
meta-training, it is possible to deduce the meta-testing equation that is therefore defined
as:

0* = argmin £ (D:;igé(f), 9, w*) inner optimization (3.3)
0

Given a task i. The meta-testing requires to apply the learned meta-knowledge w*, that
is why the formula is close to the inner optimization one.
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For comparison purposes, equation shows how the conventional training setup would
be described in this formalism:

¢ = argmin £ (D, 6, w) (3.4)
9

Obviously this formalism contains only one equation, and it is only focused on model
parameters tuning. Now coming back to meta-learning formalism, it is important to
notice that equations and are not the unique way of explaining meta-learning.
Here we consider a procedure based on the ”learning to learn” idea, but meta-learning
can also consist in learning some meta information that will prove useful for generalization.
Both approaches have led to the development of several models, such as Model Agnostic
Meta-Learning (MAML) [I6] for the first and Siamese Networks [32] for the second. In
this work, we will particularly explore the Siamese Network architecture to develop our
model.

From this theoretical point of view, let’s dive into practical meta-learning, starting by
describing the tools that are required to actually implement meta-learning models.

Meta-optimizers. First, it is important to distinguish meta-learning from the usual
way of doing machine learning, henceforth referred to as base learning. In such regular
setting, the aim is to improve predictions over data instances. In meta-learning, the
main focus is towards improving learning algorithms across learning scenarios or episodes.
Meta-learners can be described with explicit optimization objective, then they are called
optimization-based meta-learning models. In this case, w represents what we can call
the meta-knowledge. This learning can be performed by a neural network for which w
represents the initial weights. It is the case in MAML [16] which leverages gradient-based
optimization. However, this exact optimization framework leads to heavy computations
due to both inner and outer gradient-based optimization.

In order to get rid of second order derivatives computation, the model-based or black-box
approach, often presented as feed-forward model architecture has been proven efficient
using networks such as CNN [43] or LSTM. For instance, [56] build a LSTM-based meta-
learner to learn an optimization algorithm (based on gradient descent) used by another
deep learning model that performs the desired task.

Finally, third way to perform meta-learning in a efficient way is to use metric learning
based methods such as Siamese [32] or Matching [69] Networks. These methods actually
leverage loss learning which is a sub-domain of metric learning. Both have been proven
efficient in few-shot learning setting, even if Siamese Networks seem to perform poorly
on one-shot learning according to Vinyals et al. [69]. Another alternative is Relation
Networks [64], which is initially designed for few-shot learning but also has a natural
adaptation towards zero-shot learning. In our experiments, as we are using Siamese
Networks, it is essential to pick a loss from this metric learning framework.

Meta-learning settings and applications. Few-shot learning can be a challenging
setting when using deep learning models. Indeed, in this case data volume tends to be
a key factor in performance, but training large models with limited datasets, often leads
to overfitting or non-convergence of the optimization strategy. This way, meta-learning
helps to address this challenge, even though the reached performance do not yet exceed
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those of fully supervised approaches [25]. Let’s give some examples of meta-learning
settings that address the issues of few-shot learning. First, there is Hyperparameter
Optimization (HO) which can by applied to an existing meta-learning method in order
to improve its performance in FSL. However, HO is not a meta-learning setting in itself.
Then, Neural Architectural Search (NAS) can be considered as a type of hyperparameter
optimization in which the architecture of a neural network is determined by w. It is a
meta-learning setting but this method is computationally heavy, therefore it is hard to
reach optimality still because of non differentiability issues [I5], 89]. It is also challenging
to find architectures bound to generalize well, i.e. that are promising in F'SL scenarios.
Finally, some Continual Learning (CL) approaches can be used to generalize knowledge
across new tasks without damaging too much the knowledge about previous task. This
common pitfall in meta-learning, called catastrophic forgetting, can therefore by address
by such methods.

Issues According to Hospedales et al. [28], even if there are several ways to define the
meta-knowledge w, a definition with too many parameters would not be a scalable solution.
Moreover, there are some issues with gradient descent meta-optimization that can appear
in two ways: the first one would be if the meta-objective is not differentiable, in which
case alternative approaches may be suitable like reinforcement learning of evolutionary
algorithms. The second one is because of a gradient-based inner optimization, outer
optimization computations are costly as they require a second order derivative.

Challenges and further works. One of the main challenge is to broaden the definition
of the task distribution p(7). In can be for example a multi-modal distribution or more
generally involve different learning strategies to be trained on. Furthermore, the objective
is not only to be able to learn relevant features but also to generalize properly across a
variety of tasks. Here, the domain shift may be an issue to handle. In ERC, one may also
want to generalize across labels, therefore being able to compute predictions on previously
unseen labels. By using a meta-learning approach in this work, we expect that, in the
end, our final model will be capable of such generalization.

There are also some computational challenges that explain why the FSL setting is often
preferred for it is less costly than a fully supervised approach. Moreover, computing
second order gradients can be harmful in such cases, that’s why there exists some tricks
to avoid full differentiation. In this perspective, feed-forward models have been proven
efficient.

3.2 Deep Learning Methods on Conversation Data

In this section, we focus more on conversational data handling concerns. Precisely, the
aim of this work is to perform emotion prediction on conversational data, which is a
particularly specific type of text data. The following will explore common practices and
challenges regarding conversational data in the specific scope of emotion recognition. In
that case, such a task is often referred to as ERC, which stands for Emotion Recognition
in Conversation. Its principle is very similar to the one of sentiment analysis which is one
of the most famous NLP tasks, even if sentiment and emotion are rigorously two different
concepts. Thus, this section stems from a recent survey on textual conversations [50] and
gives insights about the latest advancements and challenges in the use of deep learning
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approaches for ERC. These insights will be particularly useful for our experiments, not
only to build an accurate context representation but also for qualitative interpretation of
the results.

Conversation and emotion representation. This first concern is about the con-
versation itself. A conversation has a context, which means that it is necessary to use
appropriate utterance representations that account for information in preceding and fol-
lowing utterances. Moreover, in real-life conversations, some useful contextual elements
can be underlying or implied but not expressed as words in the text. Some parts of
the explicit context can also be expressed through common sense expression or informal
language.

Regarding emotions, in the following work we are going to focus on dyadic conversations
where each speaker turn (i.e. each utterance) is labelled with one emotion. This way,
it is not necessary to store the identity of the speaker for each emotion expressed and
the retrieved information is more precise than a global feeling for the whole conversation.
Indeed, no matter how one stores the emotions, it is important to account for emotion
shifts through statements since the emotions conveyed during a dialogue can change. In
addition, it is possible to find causality between emotions which can explain why such
emotion is expressed : since A got angry at B for his behavior, B may feel offended when
he would not have been without A’s words.

Conversation Understanding. In order to produce accurate and relevant predictions
on ERC, it is necessary to ensure a right and complete understanding of the conversation
along with its emotions. The first difficulty in that sense is ambiguity that lies behind
emotion annotation. This can induce bias in training, then consequently in evaluation [20].
Still regarding annotation, there are multiple ways to represent emotions that lead to dif-
ferent training and inference settings. The most broadly used setting is the categorical
approach which boils down to a simple labelling procedure. Furthermore, in this setting
it is possible to account for mixed emotions with explicit annotations thanks to multil-
abelling. On the other hand, emotion can be described with a dimensional approach [17],
as a weighted combination of different aspects. This is also an appropriate design for
mixed feelings but seems difficult to implement as a labelling system, in addition to be
very costly.

Moreover, another crucial aspect in conversation understanding is the emotion distribution
in the dataset. Indeed, if the dataset is not well balanced, which is often the case due
to the natural abundance of neutral utterances, the model mostly learns to predict the
absence of emotion instead of a spectrum of different feelings. This is an issue in our case
as the dataset we use is very unbalanced. We describe in next chapter how we tried to
mitigate this issue.

Annotation subjectivity. Allocating an emotion to a sentence is obviously a subjec-
tive task, since humans are evaluating content produced by humans. In order to achieve
the most reliable annotation of the dataset, there are two approaches. The first assumes
that a ground truth label exists. In this case, several experts annotate the sentence and
the emotion is chosen either by majority voting or by weighting the experts’ evaluations
by scores. The second assumes that there is no ground truth label. In this case, light
annotation is used, assigning to each sentence a distribution of labels weighted by their
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probability in such a context. Annotation subjectivity is one of the aspects to be explored
in qualitative analysis of results.

Overview of Available Datasets. Regarding conversational tasks, data availability
is often a challenging point. There are actually very few accessible datasets and not
all of them consist in real-life conversations. Here are the main datasets that can be
encountered in conversation-related deep learning works. For each dataset, if possible, we
indicate state-of-the-art performances in ERC, whether it uses meta-learning or not.

e IEMOCAP [9] is the main baseline for multi-modal emotion recognition tasks. In
particular, it contains more than 7,000 utterances from dyadic dialogues. These are
real-life conversations that aims at being realistic and spontaneous. Li et al.[36] pro-
pose a new model structure adapted to multimodal emotion detection that achieves
69.49% accuracy on textual data only, without using meta-learning.

e MELD [52], EmoryNLP [73] and Friends [29] are three datasets containing scripted
dialogues extracted from Friends TV show. Even if these conversations come from
actual discussions between humans, they are not spontaneous and may not be very
realistic. On MELD dataset, Song et al. [63] leverage Prototypical Networks [62]
along with contrastive learning [34] to perform ERC and achieve 67.25% in weighed
F1 score. The same model on EmoryNLP achieves 40.94% in the same metric.

e DailyDialog [35] consists in more than 12,000 generated dialogues intended to be
representative of daily concerns. These dialogues are labelled with the 6 Ekman’s
emotions. This is the dataset we are going to use in the experiments. Liang et
al. [37] propose a model based on Graph Neural Networks (GNN) and CRF that
achieves 64.01% in micro F1.

e EmoContext [10] and EmpatheticDialogues [55] contains dyadic dialogues between
a human and a conversational agent, these are thus semi-generated conversations.
EmpatheticDialogues provides twice as much conversations that DailyDialog. On
EmoContext, Ragheb et al. [54] achieve 76% in micro-F1 by using an attention-based
model, therefore no meta-learning.

Now that the available tools and the points of attention for doing ERC are given, a
question remains about how to develop a deep learning model able to detect emotions in
conversations. There is first a need to explore the constraints on the utterances repre-
sentations to be given to the model. Afterwards, we will see what kind of models can be
used according to the specificity of this task.

Using embeddings. Contextual embeddings are a type of word embedding model that
incorporate context from surrounding words in order to generate representations of words
that capture their meaning within a given context. This implies that the word representa-
tion will differ depending on the context, contrary to static embeddings. Such embeddings
allow for improved performance on ERC where the context conveys many clues to prop-
erly understand the expressed feelings. When building our context-aware model, we use
attention-based contextual embeddings on the whole dialogue in order to highlight any
relevant contextual information.
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Designing models. When designing deep learning models for ERC, the main concern
is to have an accurate and complete contextual representation. The need to account for
sequential dependencies would point to RNN. Even though, since it may be necessary to
retrieve information far away from the target utterance, a model architecture like LSTM
networks would be more adapted as it accounts for long term dependencies. As the
contextual window of an utterance is actually two-sided, symmetrically, a Bidirectional
LSTM (BiLSTM) seems to be relevant as used in [30].

As bidirectionality still suffers from lack of understanding long term dependencies, attention-
based approaches, such as Transformers, has been proven efficient on ERC. More precisely,
it uses Transformer encoder on the conversation, therefore leveraging self attention. Fi-
nally, instead of encoding the content of the conversation, it is possible to encode depen-
dencies and relationships between speakers and utterances using graph-based approaches.
However, as it consists in exploring the neighborhood, weaker relationships tend to be
ignored, that’s why such approaches are sometimes combined with recurrent methods in
order to still account for long term dependencies [41].
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4. Context-Aware Meta-Learning

Now that we’ve reviewed all the essential prior knowledge about meta-learning algorithms
for ERC, let’s consider the technical aspects of our implementation, along with the results.
The first part of this chapter is devoted to describing the available data. This is followed
by a detailed description of the experimental setup, and then both quantitative and
qualitative analysis of the obtained results.

4.1 Data

Description. Amongst previously presented datasets, the first selected dataset for the
experiments is DailyDialog [35]. The main advantage in using DailyDialog at first sight
is that it is relatively small, therefore it is quite easy to handle the entries and run tests
on it. However, it as two main shortcomings. Firstly, one has to notice that the dataset
is highly unbalanced because many of the utterances are labelled with no emotion label.
This has to be considered during model training in order to learn also on actual emotions.
Secondly, all the conversations of DailyDialog have been artificially generated, which has
to differ from conversations of the real world. Therefore, even if the experiments further
described in next sections have been held on DailyDialog, one of the main perspectives
of this work is to be able to test on other datasets (such as EmpatheticDialogues [55]),
or at least to account for a satisfying transferability of acquired knowledge, especially on
human-to-human conversations.

Overview. More precisely, Figure 4.1| provides an overview of the dataset. It is already
splitted in train, validation and test sets (see Figure . Regarding each entry, it
contains the dialog content, the dialog acts and the dialog emotions (see Figure . A
dialog act characterizes what a speaker is trying to express in its speaking slot. This will
not by studied in the following as we are going to focus on emotion labels only.

{'dialog': ['Say , Jim , how about going for a few beers after
dinner ? ',
' You know that is tempting but is really not good for our
DatasetDict ({ fitness . ',
train: Dataset({ ' What do you mean ? It will help us to relax . ',
features: ['dialog', 'act', 'emotion'l], " Do you really think so ? I don't . It will just make us fat
num_rows: 11118 and act silly . Remember last time ? ",
}) " I guess you are right.But what shall we do ? I don't feel
validation: Dataset({ like sitting at home . ",
features: ['dialog', 'act', 'emotion'l], ' I suggest a walk over to the gym where we can play singsong
num_rows: 1000 and meet some of our friends . ',
}) " That's a good idea . I hear Mary and Sally often go there to
test: Dataset({ play pingpong.Perhaps we can make a foursome with them . ",
features: ['dialog', 'act', 'emotion'l], ' Sounds great to me ! If they are willing , we could ask them
num_rows: 1000 to go dancing with us.That is excellent exercise and fun , too .
1) Y
1 " Good.Let ' s go now . ",
' A1l right . '],
(a) ‘act': [3, 4, 2, 2, 2, 3, 4, 1, 3, 4],
‘emotion': [0, 0, 0, 0, 0, 0, 4, 4, 4, 4]}
(b)

Figure 4.1: Some details about DailyDialog organisation (left) and entries format (right)
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4.2 Experimental Setup

Model choice. From now, regarding the overall model we will focus on Siamese Network
architecture which has been identified to be a promising model in such context. Compared
to other metric learning approaches, Siamese Networks has been chosen also for pedagogic
purposes, as its structure is relatively simple, and also to compare with Prototypical
Networks which has already been evaluated on related tasks [24].

Evaluation criterion. In order to evaluate Siamese Networks, a common way is to use
the triplet loss which purpose is to grant greater similarity to elements of the same class.
This can be done by comparing the distance between entries of the same class and entries
of different classes (considering ground truth labels). Formally, one defines a triplet of
entries that contains an anchor, a positive and a negative entry. anchor and positive
share the same class whereas negative is from another one. For concrete implementation,
this setup is broaden to multiple entries in a row. Therefore, let’s consider a triplet of
batches (A, P, N) where all entries in A and P belong to the same class, and all entries
in N belong to another class. The triplet loss can be defined as follow:

L(A, P, N) = max{d(a;, p;) — d(a;,n;) + margin, 0}

The margin parameter is here to ensure that a relevant optimal solution is found. Other-
wise, the optimal setting would be to simply set all the distances to zero, which is not a
suitable solution. One usually sets this parameter to 1.

4 p [ p N
AW AAP) 7
A

d(A, N;\ m

N L N

d(A,P) —d(A,N) >0 d(4, P)
L(A,P,N) >0 (A,P,N)

Figure 4.2: Triplet loss value depending on the configuration between anchor, positive
and negative samples.

Specificities in training. Due to the use of the triplet loss, the model needs to have
3 parallel forward paths to encode a triplet where similar entries should be aligned com-
pared to dissimilar ones. The main advantage of this setup is that the triplets are built
by randomly selecting the two represented classes. This way, even if it conduces to lit-
tle oversampling, the loss is applied to a more balanced dataset than the original one
which reduces bias. However, this training approach sometimes has trouble converging.
Therefore, in order to reach optimality more easily, in particular when considering conver-
sational context, it has been considered to use some warm-up training steps. It consists
in 3 epochs performed with a very small learning rate which allows to slightly move
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in loss landscape in order to more easily reach a global optimum during main training.
In addition, accounting for the fact that having an accurate learning rate is essential in
meta-learning, it as to be relevantly chosen, either through an empirical study, or by using
standard training or optimizer strategies such as decay rate or learning rate scheduler.

4.3 Experiments

Based on this setup, we carried out two main experiments: the first involved producing
emotion predictions without taking the context into account, and the second considers a
way of representing this context that can be included in the model. Let’s describe these
two approaches separately.

4.3.1 Siamese Networks on Isolated Utterances Representations

In order to gradually increase the complexity of the implementation to reach the desired
architecture, the first step is to consider isolated utterance representations, i.e. that does
not take into account the conversational context. These may also be referred to as static
utterances, in reference to static embeddings, in the sense that the representation of the
utterance remains the same whatever the dialogue it belongs to. This first step is useful to
alleviate the preprocessing step at first. Such static representations are obtained through
tokenization using FastText encoding, which means that each word is represented by its
index in FastText vocabulary. From this prepared data, the dataset has been formatted
to form triplets in order to fit with triplet loss computation. Regarding the core model of
the Siamese architecture, we experimented with different models to evaluate the influence
of core model choice. The overall training pipeline, including the specific data handling
is illustrated on Figure [4.3]

4.3.2 Siamese Networks on Conversation-Aware Utterances Rep-
resentations

Once this preliminary work is done, the idea is to adapt this first model to context-
aware representations. For this purpose, we selected an attention-based encoding at the
dialog level. To enable such attention we chose Transformer-based architectures, especially
BERT models. Before applying the model, it is necessary to use the associated tokenizer
that contains special tokens such as [SEP] which will prove very useful as it indicates the
separation of utterances. To have a better idea of how BERT tokenizer acts on text, an
end-to-end example is provided in Appendix in Figure 5.4, A BERT tokenizer typically
converts the text of one dialog into up to 512 tokens, including [SEP] tokens. This size
limitation is an important concern at this stage because it implies that a part of the
dialog will be lost. When performing tokenization, it is possible to set either left or right
truncation. Thus, some probing of DailyDialog emotion labels has been done in order to
have an idea of the emotion distribution over all dialogues. As shown in Figure [4.4] it
appears that the beginning of the dialog seems to convey more emotions that the end.
A more precise study as been held over each emotion (see Figure in Appendix) and
leads to the same conclusions. For this reason, the tokenization will be performed using
right truncation.

So far we have described the whole tokenization process, which corresponds to the first
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Figure 4.3: Training pipeline for emotion recognition on static utterances
representations using Siamese networks.
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Figure 4.4: Distribution of expressed emotions w.r.t. the utterance index in dialog

three steps in Figure (4.5l The next step is to encode the dialog using BERT model, in order
to get a contextual representation of the conversation. Thus, each token is encoded into a
768-dimensional vector. The dashed brackets are not actual splits, they are just there to
identify what will be used to form the contextual representations of utterances. Similarly,
the [SEP] token also has its own vector encoding, which is not shown here for clarity.
Since the boundaries of each utterance are saved, it is easy to split this BERT output
accordingly. The last step is finally to flatten and pad each utterance representation using
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a linear layer which outputs a 512-dimensional vector (512 being the padding length).

Original dialog

Initial dialog, as it can

be found in the dataset [utty, utts, utts]

Prepare text for tokenization utty SEP utty SEP utts

Apply a BERT tokenizer [tok,---,tok SEP tok,---,tok SEP tok,---,tok]

Apply a BERT model to obtain E , e, E SEP E , e, E SEP E , e, E
a dialog encoding E ' E : E '

w0 -8 (8]

Apply a linear layer to flatten
each utterance representation

[
L1
I

Retrieve a list of context-aware
utterances representations ) )

512 new tokens 512 new tokens 512 new tokens

Utterances encoding in conversational context

Figure 4.5: Description of the whole preprocessing and encoding process from dialog
text to conversation-aware utterances representations.

Thanks to the aforementioned process, one ends up with context-aware representations
of the utterances, that we can call conversation-aware in this particular context. From
such representations it is possible to apply triplet loss on top of it to learn the utterances
emotions. The overall model is still a Siamese Network in which the core model would be
the encoder used to generate context-aware representations. The detailed process used to
train such model is described on Figure [4.6] Indeed, the first step is to train the encoder
named EmCoBERT for our experiments. From this BERT-type encoding, we first train an
emotion classifier on CE loss and then use the encoded representations to train on triplet
loss. The underlying hypothesis is that this training procedure will lead to an encoding
which is favorable to contextual emotion detection.

4.4 Results

Now that we have a complete description of both experiments, let’s have a look at the
results on the test set. First, we’ll look at the results from a quantitative point of view,
by evaluating classification metrics. Next, we’ll take a closer look at the predictions in
order to provide a qualitative analysis.
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Figure 4.6: Training pipeline for emotion recognition on contextual utterances
representations, using Siamese Networks.

4.4.1 Quantitative Analysis

Regarding the quantitative evaluation of both models (isolated utterances and contex-
tual), three main experiments have been conduced. One on the isolated utterances model
only in order to find the most adapted core model, one on the contextual model only to
find the more appropriate training setup, and finally one joint experiment on both model
to compare their performances once they are accurately tuned.

Isolated only. Regarding isolated utterance representations, two main setups have been
considered: LSTM and Linear layers (Multi Layer Perceptron, MLP) as core model. The
values of several classification metrics on test set are presented in Table[d.1] It appears that
LSTM-based models achieve overall best performances than MLP-based models, which is
certainly due to their ability to capture some contextual information within the utterance.
However, it is best not to use too many layers of LSTM, in which case one observes a
decrease in performances. In fact, by adding layers that consider the entire utterance
(thanks to long-term memory), we tend to end up with an over-encoded representation,
and therefore lose specific elements that support certain emotions.

Contextual only. Regarding conversation-aware utterance representations, the first
experiment has been held on a subset of the training set containing either 1000 or 5000
samples (which means up to half the training set), in order to run several experiments in
a reasonable amount of time. This reduced training set is enough to compare different
setups in terms of hyperparameters and select, in particular, an appropriate learning rate.
Thus, it is worth noting that in the following, the learning rate has been chosen after an
empirical study. Methods such as decay rate and/or learning rate scheduler are yet to be
tested. Then, the batch size has been fixed to 8, which seems small but is actually the
maximum possible regarding memory constraints. Table gathers some of the results
for this set of experiments.

As it is usual in meta-learning, it seems that the results are sensitive to the learning
rate. Moreover, even if the results are not that good at this stage, it is interesting to
notice that the last run, using five times more training data than previous runs, achieves

28 Chapter 4 Barbara Gendron-Audebert



Meta-Learning in Conversational Context

Layers Accuracy? Loss] PrecisionT Recallf wF1 scoref
LSTM-based models

3 68.0 0.706 0.682 0.680 0.680
4 67.9 0.734 0.678 0.679 0.677
5 70.0 0.711 0.702 0.700 0.700
6 65.4 0.756 0.658 0.654 0.655
7 66.2 0.793 0.664 0.662 0.661
MLP-based models
3 68.4 0.747 0.685 0.684 0.684
4 62.9 0.834 0.629 0.629 0.628
5 64.7 0.801 0.650 0.647 0.647

Table 4.1: Main results using Siamese Networks on static utterances representations.
Best values are in bold and arrows indicates if greater or lower is better.

Tr. samples L. rate Epochs MCCt Loss] Precisiont Recallf wF1 scoref

1000 de—4 10 0.422  5.56 0.506 0.505 0.505
1000 le—3 5 0.456 4.26 0.535 0.534 0.534
1000 de—4 5 0412 5.54 0.497 0.496 0.496
1000 le—4 5 0.435 5.82 0.516 0.516 0.516
5000 de—4 3 0.454  5.31 0.532 0.532 0.532

Table 4.2: Results for Siamese networks on conversation-aware representations in
different configurations.

results almost equivalent to the best run, even though it is not performed in the optimal
configuration. This strongly encourages to run experiments on the whole dataset. Finally,
the setting of five epochs have been proven relevant in most cases and is retained for the
following.

Isolated versus contextual. The last experiment described in this part aims at com-
paring the static and the contextual approaches, both in their optimal configuration.
Then, as in meta-learning we study the ability of a model to transfer knowledge, it is
crucial to ensure stability through a small variance. This is therefore a relevant criteria
at the time of evaluation, in the sense that a less efficient model with a lower standard
deviation will be preferred to a model with a large F1 score that produces highly variable
results. To actually compute the variance in the following results, predictions on the
test set have been performed 10 times using the same trained model, then the metrics
have been averaged and the variance is given from these runs. In the results presented
in Table |4.3| each experiment has been made twice, for two different learning rates. The
first thing we can observe is that the isolated utterance model outperforms the contextual
model by about 17% in weighted F'1 score in both cases. This suggests that a contextual
model with a Transformer-based encoder is far more challenging to tune than a LSTM-
based model on isolated utterances. Regarding the variance, it seems fairly equivalent
from one model to the other. In general, both models are less stable with a learning rate
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of le—4 rather than 5e—4.

QUANTI-STAT

Avg. on 10 runs 1r = 0.0005 1r = 0.0001
Loss] 0.7821 £ 1le—2 0.7652 + 1e—2
MCCt 0.6373 £ 4e—3 0.6243 4+ 6e—3

Precision? 0.6874 +4e—3 0.6760 £ 5e—3

Recallt 0.6883 +-4e—3 0.6777 & 5e—3

wF1 scoref 0.6843 +4e—3 0.6759 £ 5e—3
QUANTI-CONV

Avg. on 10 runs 1r = 0.0005 1r = (0.0001
Loss] 5.2352 + 0.005 5.8808 +0.1610
MCCt 0.4286 + 6e—3  0.4238 4 le—2

Precision? 0.5103 4+ 5e—3 0.5064 £ le—2
Recallt 0.5102 £ 5e—3  0.5061 4 1le—2
wF1 scoref 0.5111 £+ 5e—3  0.5060 4 1le—2

Table 4.3: Table of results on test set

4.4.2 Qualitative analysis

Prediction distributions. Regarding predictions on isolated utterance representa-
tions, all graphs are represented in Figure to give an overview of the prediction dis-
tribution, label by label. The equivalent graphs for predictions on contextual utterance
representations are given in Figure[d.§ Each pie chart gives the distribution of predictions
when the true label is the one written below the chart. For easier reading, each pie chart
is available individually in the Appendix (Figures 5.6/ and [5.8)).

What we can first observe for isolated representations is that, except for fear, the ex-
pected emotion is always the most often predicted, in the sense on an absolute majority.
According to the overall label distribution given in Figure [5.2] it seems that the best pre-
dicted labels are also the most frequently encountered. On the contrary, the rarest labels
which are fear and disgust are those with the lowest proportions of correct predictions.
These two trends are also observed in the case of contextual representations, except that,
in this case, we have a relative rather than an absolute majority in four cases out of seven.

Then, regarding wrong predictions, in both cases we can observe that they are equally
distributed between the remaining classes. This is due to the use of triplet loss and in
particular the formation of triplets, which involves randomly selecting the classes present
in the triplet according to a uniform distribution. Since this selection is not weighted
with respect to class frequencies, in the end the labels are equally represented.

In-depth prediction analysis For this qualitative study, we focus only on predictions
made on contextual representations. Starting from the contextual representation of the
dialogues, we selected only the dialogues where it is possible to build a triplet of utterances,
in terms of triplet loss. Then, by indexing the whole test set, it is possible to retrieve
the original dialog text associated to each prediction. From this setup, we were able to
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Figure 4.7: Distribution of predictions for each actual emotion in the case of isolated
utterances representations.

No emotion Anger Disgust Fear

Happiness Sadness Surprise

Emotion

No emotions
Anger
Disgust
Fear
Happiness
Sadness
Surprise

Figure 4.8: Distribution of predictions for each actual emotion in the case of contextual
utterances representations.

extract and look into predictions on 495 dialogues, which represents approximately half of
the test set. In the following, each cited sentence is an utterance or part of an utterance
that actually belongs to the test set. In addition, any label other than no emotion will
be referred to as an emotional label.

A first finding that is quite common in such experiments is that misclassifications are not
random. Thus, whereas in a previous work on Prototypical Networks [24] it was found
that surprise was often wrongly predicted compared to other emotional labels, here we
find that it is happiness that fulfills this role. Indeed, it is very often predicted instead of
no emotion in such situation that we can imagine the prediction most of the time relies
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on anchor words (in the sense of stumbling blocks, nothing to do with the anchor from the
triplet loss). They include words like ”fine”, "really”, ”all right”, ”great”, "yeah”, ” cute”
or "terrible”. These words often carry emotion, but not in every context. For instance,
"great” can be used to express joy, but also to mean an agreement, which can be purely
informative. Additionally, ”nice” can be used when the protagonist is happy, but also in
some greetings like "nice to meet you”. Therefore, the presence of these pivot words will
often lead to a wrong prediction in favor of an emotional label (mainly happiness and,

less often, surprise) rather than the no emotion label.

Another factor that leads to misclassification seems to be the presence of some punctuation
marks that may be associated with emotions such as 777, ”!” or ”7...”. Here we are
still pointing out cases where no emotion is to be predicted. Indeed, in many neutral
utterances, the presence of such prediction marks leads to an emotional prediction, most of
the times being happiness. Nevertheless, it is also possible to observe a correct prediction
of neutrality even when such punctuation marks are present, and this happens especially
when the context of utterance is rather neutral. This is an important finding because
it brings situations when the conversational context seems to influence the nature of the
prediction. Nevertheless, if we compute predictions for the same utterances with isolated
utterances model, it appears that these are correctly predicted as well. Therefore, we
have to be careful when interpreting such contents. Such situation is illustrated by the
example in Figure[4.9al The utterance in itself seems quite emotional with the expression
”Oh no!” and the presence of punctuation marks. But if we look more closely at the
context, we end up with a common situation of a person looking for their way, hence the
"no emotion” label.

Back to the happiness class, we realize that it is predicted for many basic, factual ques-
tions such as "When do the playoffs start?”, "How much is it?” or "That’s all I have
to do?”. Therefore, we end up with a broadly predicted label, sometimes in irrelevant
contexts. To be more precise, happiness is almost always correctly predicted when it
comes to be the right class, consequently this particular label has a very good recall, but
a very bad precision.

Overall, apart from the aforementioned cases, no emotion class is often accurately pre-
dicted when the sentence is either declarative or informative. It works particularly well
when the utterance does not contain any adjective, such as "Here you are.” or ” And the
bubble wrap?”. This is overall a quite expected finding as no emotion class is broadly
represented in the dataset.

Apart from these two most common labels, let’s focus on the other emotional labels.
First, we can discuss the case of fear and disgust. They appear to be quite similar
labels in the sense that they are usually correctly detected in obvious situations such
as "I'm really in a flap about the interview.” for fear or "It looks like some kind of
primitive form of torture.” for disgust. However, these labels also appear wrongly in
some neutral contexts such as ”The service did not help the situation.” (emotion: no
emotion, prediction: disgust), which seems very surprising. In fact, according to the
emotion labels distribution across the datasets (¢f. Appendix , these emotions are
poorly represented, which is probably why these classes are misunderstood.

Then, regarding sadness and anger, we notice that they are often predicted in presence of
words expressing strong feelings such as impossibility or urgency for anger: "I can’t send
out mails. We'd better call the I'T department and ask them to check it immediately.”.
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For sadness, we often find negative or restrictive words such as: ”No, thanks. I've had
more than enough. In fact, I must be running along.”. Same as for happiness, such words
seems to play the role of anchor words which is not always leading to correct predictions,
as it is the case in the aforementioned examples.

Overall findings. Asseen in the previous label-by-label study, it seems that no emotion
label can be correctly predicted on an utterance with emotional markers when its context
is overall neutral. This suggests that context does help sometimes, but it can also be
found situations of wrong predictions when context should have helped. An example is
given in Figure [4.9b, Here, the utterance in itself expresses happiness but it has not been
detected. Once again if we look closely at the context, we see that not only this utterance
but rather the whole dialog reflects a happy atmosphere. This should have helped the con-
versational model to accurately predict this emotion. In fact, it seems that these wrongly
predicted utterances for which context should help are particularly difficult to predict in
general. Indeed, when inferring with isolated utterance model on such examples, most of
the predictions are wrong too.

DIALOG #125 DIALOG #354

Hit ' em high , hit ' em low . Class of ' 93 — let's go !

Yes . I want to go to Beijing Hotel . Hi there , everyone . We hope you're having a good night !
I'm sorry . You are going in the wrong direction . Wasn't that football game great ! I just knew we'd win !

0h no ! What shall I do ? The night is young , folks . Get some food and mingle with
those faces from yesterday .

- Later we'll let you know who the King and Queen of the Reunion
will be .

- But for now , the band is playing the songs from our senior
year . Get out on that dance floor !

May I know where you are going ?

LI B |
LI N |

- Don't worry . You can get off at the next stop and go
across the street through the overpass . The bus stop is
right there .

- Thank you very much .

- My pleasure .

Utterance: Wasn't that football game great ! I just knew we'd

Utterance: Oh no ! What shall I do ? win !
Emotion: no emo. Prediction: no emo. Emotion: happiness Prediction: no emo. X
(a) (b)

Figure 4.9: Two examples of situations where the context seems to influence the
prediction. On the left, the context seems to have helped providing the right prediction,
whereas on the right it seems to have not been taken into account.

Moreover, we found several situations when the conversational model wrongly predicted
an emotional label instead of no emotion. A closer look at the utterances corresponding
to these examples reveals that they often convey an emotion, even if it cannot be described
by one of the 6 emotional labels, maybe due to their low intensity. This suggests that the
model has learned a certain sensitivity to the concept of emotion, without always being
able to accurately describe it. Indeed, the assigned emotion is not always consistent with
what is expressed in the dialogue. This is typically what can be observed in the examples
shown in Figure In these examples, not only the utterance in itself but also the
context would suggest that a feeling is conveyed, even if it does not correspond to any of the
six emotional labels. Indeed, in most of the cases, it seems that such emotional predictions
are triggered from the conversational context. To add a quantitative insight, let’s consider
all samples labelled with no emotion. If we compute the ratio of emotional predictions
over no emotion predictions, we end up with 0.27 on the isolated utterances model, and
1.04 on the contextual utterances model. Therefore, the contextual model is very likely
to predict emotion when the label is no emotion, contrary to isolated utterances model.
Overall on all labels, this trend is present but less pronounced for all labels, with 17% of
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"no emotion” predictions for isolated utterances, versus 15% for the contextual model.

=== DIALOG #307 DIALOG #305

- Dave , there's something I want to talk to you about .
- Zina , why are you whispering ?
- I've been talking to WebTracker . I'm thinking of jumping

- Excuse me . Do you mind if I try this on ?
Not at all . The changing rooms are just this way .
Thanks . It's a little tight . Do you have any in a larger

ship .

- What ? Are you serious ? You'd defect to our archrival ! ? size ?

- Keep your voice down . We'll talk more later . Right now I - Sure . I'll give you the next size up . That one is small ,
need to see Vince . right ?

- We definitely have to talk , Zina . And watch your back . -  Yes . Also , I'm not so sure about the color .

Elvin is still mad about his nose .

- Well.It doesn't go with your skirt . I think the color itself
- OK , but don't tell anyone what I said .

is fine though .

Utterance: We definitely have to talk , Zina . And watch your ,
back . Elvin is still mad about his nose . Utterance: Yes . Also , I'm not so sure about the color .

Emotion: no emo. Prediction: surprise X Emotion: no emo. Prediction: happiness X
(a) (b)

Figure 4.10: Two examples of situations where the model predicts an emotional label
instead of no emotion. As it can be seen, the predicted emotion does not always
correspond to the feeling conveyed in the dialog.

Critical aspects. First, it appears that there are still some unexplainable situations,
that is to say where neither the utterance nor the context help to explain the output. This
point is not surprising as explainability is often at stake when dealing with deep learning
models, also it seems to represent a minority of examples among the samples. Two of
them are given in Figure [4.11, For both of them, the context seems overall neutral, and
the predicted emotion does not correspond neither to the utterance itself, nor to any other
utterance in the dialogue.

DIALOG #82 DIALOG #286

- Excuse me . Check please .

- 0K , how was everything ?

- Very nice . Thank you .

- Would you like this to-go ?

- Yes , can you put it in a plastic bag ?

- I need to get my high speed internet installed .

-  You'll need to make an appointment .

- Could I do that right now , please ?

- What day would you like us to do the installation ?

- Sure , no problem . Here you are . That'll be 25 dollars . — Is Friday good ?

- Do you take credit cards ? - We're only available at 3

- Yes , we accept Visa and MasterCard . - You can't come any earlier than that ?

- 0K, here you are . - I'm sorry . That's the only available time .

= Thanks . I'LL be right back . - Are you available this Saturday ?

- XK. . - Yes . Anytime on Saturday will be fine .
— Here's your receipt .

- How does 11
- Thank you .

- You're welcome . Please come again . - We can do it . See you then .

Utterance: 0K . Utterance: How does 11
Emotion: no emo. Prediction: happiness X Emotion: no emo. Prediction: sadness X

(a) (b)

Figure 4.11: Two examples of unexplainable predictions.

All in all, what emerges from the aforementioned points is that sometimes the context
seems to be taken into account, sometimes the prediction is strongly based on the utter-
ance itself. Therefore we definitely cannot state that context helps in all cases, which also
means that we cannot assert it is accurately represented in such model. This may be the
main limitation of our contextual model. More details on this point are provided in the
next section.
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However, there is an overall relevancy of predictions, as a majority of them are correct
and also because the presence of an unknown feeling is often detected by the model.
What can be added to that point is that some predictions said to be wrong can actually
be considered as plausible or even true. This brings us back straight to the question of
subjectivity in annotation, and leads to situations like those illustrated in Figure In
this case, we can reasonably consider the prediction as accurate for the utterance, even if
it is not the expected label.

DIALOG #461

DIALOG #601

- I'm a little nervous .
- Don't worry . You'll be fine . First of all , put on your seat - Do you have anything to do after this ?
belt . Adjust the mirrors . - No , I don't .

- You don't think I'll need the seat belt , do you ?

- hall we drop in somewhere for le of drinks ?
- Of course not . But it's a good habit to put it on every time you Sha e d op somewhere for a couple o d s

drive . - That sounds like a good idea .

- Just in case , right ? - I know a very interesting place .

- Right . Hold the steering wheel with your hands at ten o'clock and _ oh , do you ? Good .

two o'clock .

Utterance: Just in case , right ? Utterance: I know a very interesting place .
Emotion: no emo. Prediction: fear X Emotion: happiness Prediction: no emo. X

(a) (b)

Figure 4.12: Two examples of situation when the predicted labels, although false, seems
to be a legitimate predictions.
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5. Limitations

In this chapter, we take a step back from the results presented in the previous chapter
to discuss them and identify biases or shortcomings in our approach. First, we discuss
some general aspects, linked to the chosen dataset and the meta-learning algorithms as
such. Next, we look more specifically at the representation of conversational context and
the way we implemented it, which is the main objective and contribution of our new
approach.

5.1 General Concerns

Data specificity. For now, we evaluate emotion detection only on DailyDialog corpus,
which is actually a restrictive setup. Indeed, artificially generated conversations are not
bound to accurately reflect human interactions. They should differ both regarding emo-
tions distribution and the way these emotions are expressed. Thus, the proposed models
should also be evaluated on real conversations to ensure their transferability to other
dataset.

In addition, as we already mentioned, the dataset is highly unbalanced. This has been
partially solved by using triplet loss and a weighted CE loss for the encoder of the con-
versational model, although it is not a completely solved issue. Anyway, a shortcoming
remains with data distribution. As it can be seen in Figure [5.2] the data distribution
regarding emotion labels is very similar between train and test set, which introduces sig-
nificant bias. Therefore, we have to be cautious during the generalization step and ensure
that the model will adapt correctly to other data distribution.

Overall performance. Eventually, the scores reached thanks to this approach are
mainly quite low. We obtain a weighted F1 of 68% in isolated case and 51% in conversa-
tional case. It is possible that these results are due to the use of metric-based learning in
general which might not be the most adapted approach to perform meta-learning (even
if it theoretically consists in meta-learning). Thus, in order to broaden metric learning
methods, it might be relevant to develop a model architecture that combines metric learn-
ing to another deep learning method, such as self-attention layers. Even though, there is
a more general concern regarding meta-learning, whose approaches are known to provide
lower performances that pre-trained models. Therefore, in terms of purely task resolution,
meta-learning models are not bound to give the best results on the selected dataset, but
should still allow acceptable results in specific situations (few data, unknown labels, etc.).
This is what makes this approach still interesting in such context.

5.2 Conversation-Aware Representations Handling

Computational heaviness. It is actually quite long to run the context-aware model on
the whole training set, and the reason for that should be that the training process in itself
is actually not optimized. This is mostly due to the encoding part. Indeed, using a usual
BERT encoder consists in a very heavy dialog representation, in addition to not being
really adapted because of truncation. To solve both the issues of heaviness and undesired
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truncation, a solution would be to use an encoder such as SentenceBERT [57] that provide
a representation at the sentence-level instead of word-piece level. Then, in order to fully
account, for conversational context, one would add some transformer encoder layers to
bring attention across utterances of the same dialog. This alternative approach should
provide a more hierarchical representation of the knowledge conveyed by the utterances
within a conversation.

Few-shot performances. This concern points that the Siamese Network architecture
might not be the best in order to perform few-shot learning. This is a critical issue
in the meta-learning setting where one is expected to observe significant generalization
abilities across (potentially unseen) emotions. A more adapted approach for that would
be MAML (Model-Agnostic Meta-Learning) which seems to be an appropriate method to
acquire transferable knowledge from initialization [16], and which is actually the second
part of the internship.
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Conclusion and Perspectives

Project review. To start with, the main challenge was to develop a way to take into
account the conversational context, which, at the best of our knowledge, makes of this
work an actual contribution to state-of-the-art methods. Once we ended up with such
conversation-aware representations, the next step has been to build an end-to-end deep
learning structure that performs emotions detection using some meta-learning setting.
More precisely, the selected approaches follow the meta-learner strategy to enable trans-
ferability of knowledge about emotions. It has been evaluated regarding quantitative
and qualitative criteria in order to better understand the bias and challenges of emotion
recognition in conversation. In particular we could learn that such model training is chal-
lenging, especially when we want to implement context-awareness. Despite this, when
studied individually predictions seem encouraging in terms of retained knowledge. This
work is therefore a very first step towards generalization through emotions.

Future work. At this stage, there is still work to be done as the project will actually
last two more months at time of this writing. What appears to be the most relevant
axis for future work at this point is to build a MAML architecture, as it proved efficient
in such context. Thus, the Siamese Networks would serve as a baseline to start a basic
benchmark on emotion detection in conversation. In addition, in order to ensure stable
training for this second model, it will be necessary to provide some control on the learning
rate, using either a decay rate or a learning rate scheduler.

Personal take-aways. This Master Thesis is a real opportunity to improve my techni-
cal skills in deep learning and computer science. Indeed, I needed to learn PyTorch deep
learning framework from the very beginning in order to be able to design custom models.
This is maybe the most challenging part of the Master Thesis I encountered so far, and I
am gradually upskilling on this framework as I managed to develop a whole meta-learning
model architecture along with preprocessing, training and evaluation. In addition to my
main task, as part of SyNaLLP team I had the occasion to take part in lab events and
activities, starting with the French text mining challenge DEFT (Défi Fouille de Textes)
E]. Thanks to the support of my supervisor I was able to be part of his team working on
this challenge which led to a publication [7]. This participation also gave me the chance
to attend a joint French conference on NLP and Information Retrieval: CORIA-TALN
2023 A

All these experiences have been truly profitable for me because I plan to start a PhD
by the end of the year. This immersive experience in research is still giving me many
opportunities to interact with the NLP community and work on several state-of-the-art
approaches. Therefore, I am very grateful that I can work with SyNaLP today and I am
looking forward to pursuing work collaboration at the LORIA laboratoryf}

"https://deft2023.univ-avignon.fr/ (website in French)
Znttps://coria-taln-2023.sciencesconf.org/ (website in French)
3https://www.loria.fr/en/
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Figure 5.1: Distribution of expressed emotions w.r.t. the utterance index in dialog, for
each emotion.
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Figure 5.3: The detailed pre-processing pipeline to obtain individual utterance
representations (left) or conversation-aware dialog representations (right).
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Figure 5.4: An example of application of the preprocessing pipeline to apply a BERT

## Original dialog

- Say, Jim, how about going for a few beers after dinner ?

= You know that is tempting but is really not geood for our fitness.

- What do you mean 7 It will help us to relax.

- Do you really think so 7 I don't. It will just make us fat and act silly. Remember last time ?

- I guess you are right. But what shall we do? I don't feel like sitting at home.

- I suggest a walk over to the gym where we can play singsong and meet some of our friends.

- That's a good idea. I hear Mary and Sally often go there to play pingpong. Perhaps we can make a foursome
with them.

- Sounds great to me! If they are willing, we could ask them to go dancing with us. That is excellent
exercise and fun, too.

- Good. Let's go now.

- A1l right.

## Formatted dialeg with [SEP] tokens

Say , Jim , how about going for a few beers after dinner ? [SEP] You know that is tempting but is really not
good for our fitness . [SEP] What do you mean ? It will help us to relax . [SEP] Do you really think so ? I
don't . It will just make us fat and act silly . Remember last time ? [SEP] I guess you are right.But what
shall we do ? I don't feel like sitting at home . [SEP] I suggest a walk over to the gym where we can play
singsong and meet some of our friends . [SEP] That's a good idea . I hear Mary and Sally often go there to
play pingpong.Perhaps we can make a foursome with them . [SEP] Sounds great to me ! If they are willing , we
could ask them to go dancing with us.That is excellent exercise and fun , too . [SEP] Good.Let ' s go now .
[SEP] A1l right .

## Word-piece tokenization

['[cLs]', 'say', ',', 'jim', ',', 'how', ‘'about', 'geing', 'for', 'a', 'few', 'beers', ‘'after', ‘'dinner', '?
', "[SEP]", 'you', 'know', 'that', 'is', 'tempting', 'but’ is', 'really', 'not', 'good', 'for', 'our',
'fitness', ' '[SEP]', 'what', 'de', 'you', 'mean’', '?', 'it 'will', 'help', 'us', 'to', 'relax', '.'
[SEP]', 'do 'you', 'really', 'think', 'so', '?', 'i', 'don', ' oty it 'will', 'just', 'make’,
'time', '?', '[SEP]

‘us', 'fat', 'and', 'act', 'silly', '.', 'remember', 'last’ . 'guess', 'you',
'are', 'right', '.', 'but', 'what', 'shall', ‘'we', 'do', '?', 'i', 'don', 't', 'feel', 'like',
'sitting', 'at', 'home', '.", '[SEP]', 'i', 'suggest', 'a', 'walk', 'over', 'to', 'the', 'gym', ‘'where',
'we', 'can', 'play', 'sings', '##ong', 'and', 'meet', 'some', 'of', 'our', 'friends', '.', '[SEP]', 'that',
vty t's', 'a', 'good', ‘'idea’, '.', 'i', ‘hear', ‘mary', 'and', 'sally', 'often', 'go", 'there', "to',
'play', 'ping', '##pon', '##g', '.', 'perhaps', 'we', 'can', 'make', 'a', 'fours', '##ome', 'with', 'them', '.

', '[SEP]", 'sounds', 'great’, 'to', 'me', '
'them', 'to', 'go', 'dancing', 'with', 'u

‘if', 'they', ‘are', ‘willing', *,', 'we', 'could', ‘'ask’',
, 'that', 'is', 'excellent', 'exercise', 'and', 'fun', ',',

'too', '.", '[SEP]', 'good', '.', 'let', s', 'go', 'now', '.', '[SEP]', 'all', 'right', '.', '[SEPI', '
[pAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]", '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]", '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]*, '[PAD]', '[PAD]', "[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]"', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]*, '[PAD]', '[PAD]', "I[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]"', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PADI', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[pAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]", '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[pAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]", '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]*, '[PAD]', '[PAD]', "I[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]"', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PADI', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '
[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PADI', '[PAD]', '[PAD]', "[PAD]']

## Numericalization

[101, 2368, 10108, 3958, 101@, 2129, 2055, 2183, 2005, 1037, 2261, 18007, 2044, 4596, 1029, 102, 2017, 2113,
2008, 2003, 23421, 2021, 2003, 2428, 2025, 2204, 2005, 2256, 10516, 1012, 102, 2054, 2079, 2017, 2812, 1029,
2009, 2097, 2393, 2149, 2000, 9483, 1012, 102, 2079, 2017, 2428, 2228, 2061, 1029, 1045, 2123, 1005, 1856,
1012, 2009, 2097, 2074, 2191, 2149, 6638, 1998, 2552, 10021, 1012, 3342, 2197, 2051, 1029, 102, 1045, 3984,
2017, 2024, 2157, 1012, 2021, 2054, 4618, 2057, 2079, 1029, 1045, 2123, 1005, 1056, 2514, 2066, 3564, 2012,
2188, 1012, 102, 1045, 6592, 1037, 3328, 2058, 2000, 1996, 9726, 2073, 2057, 2064, 2377, 10955, 5063, 1998,
3113, 2070, 1997, 2256, 2814, 1012, 102, 2008, 1005, 1@55, 1037, 2204, 2801, 1012, 1045, 2963, 2984, 1998,
8836, 2411, 2175, 2045, 2@ee, 2377, 17852, 26029, 2290, 1012, 3383, 2057, 2064, 2191, 1037, 23817, 8462,
2007, 2068, 1012, 102, 4165, 2307, 2000, 2033, 999, 2065, 2027, 2024, 5627, 1010, 2057, 2071, 3198, 2068,
2000, 2175, 5613, 2007, 2149, 1012, 2008, 2003, 6581, 6912, 1998, 4569, 1016, 2205, 1012, 102, 2204, 1012,
2292, 105, 1855, 2175, 2085, 1012, 12, 2035, 2157, lel2, 1ez2, o, ¢, e, ¢, @, 0, 0, @, @, @, 0, 0, 0, @, O,
[}

e, e, 0,0, 0,00,090,89,09 0, 00,0, 0, 0,0, 0,0 0,0 000,090,600, 00,09,4®9,0,0,80,°280
e, 0,6 0,0,0,0,0,0,0,0,0,0,0,0,49, 000,00 0202000,0490,04290,08®9e0, 00,0,
e, 0, 0,0, 0,0 0,90,490,0,0,0,0 0, 0,9, 0,0, 0,090,090 020,0,009, 02090, 029,090,000,
e, 0, 0,0, 0,0,090,490,0,0, 0,0 0,09, 0, 0,000,900 04090,0,60 0,090,990, 90, 0, 0,0,
e, 0,6 0,0, 0,0,0,0,0,0,0 0, 0,0, 0, 0, 0, 0, 8, 0, 6, ¢, ¢, 9, 0, 0, 0, @, @, @, @, @, @, 0, 0, O,
e, 0,6 0,0, 0,0,0,0,0,0,, 0, 9, 0,0 0,0, 0,0 0,0,20,20,60 90,290,990, 00,0, .0,
e, e, 0, 0, 0, 0, @, 0, 0, 0, 0, @, @0, 0, @, 0, @, @, @, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, @, @, 0, @, @, O, O,
e, 0,6 0,0, 0,00,0,0,0,9 0 09,0 9 0,0 0,0, 0,0 0, 0, 0, 0,0 90,90, 0, 0, 0,0,
e, 0, 0,0,0, 0, 0,000,900 0,0 0, 0 0,0, 0]

model.
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Figure 5.6: Distribution of predictions for each actual emotion in the case of isolated
utterances representations.
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Figure 5.8: Distribution of predictions for each actual emotion in the case of isolated
utterances representations.
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